Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Biomédica (Bogotá) ; 36(supl.1): 128-136, dic. 2016. ilus, graf
Article in Spanish | LILACS | ID: lil-783530

ABSTRACT

Introducción. Giardia intestinalis es un organismo tempranamente divergente en el que recientemente se demostró la presencia de intrones. La maquinaria responsable de la remoción de intrones en organismos eucariotas superiores es el empalmosoma, el cual está conformado por cinco ribonucleoproteínas, cada una de las cuales tiene un ARN pequeño nuclear, un set de siete proteínas Sm (B, D1, D2, D3, E, F y G) y varias proteínas específicas. En G. intestinalis se han identificado los genes de algunas proteínas del empalmosoma por bioinformática. Aunque se asume que este es el responsable del empalme en el parásito, su caracterización bioquímica no se ha hecho. Objetivo. Inhibir dos genes que codifican para proteínas del empalmosoma de G. intestinalis con el fin de determinar si esta inhibición afecta el crecimiento o el enquistamiento del parásito. Materiales y métodos. En un vector específico para G. intestinalis se clonaron secuencias antisentido de los genes que codifican para las proteínas SmB y SmD3 del empalmosoma del parásito. Posteriormente, se transfectó G. intestinalis con los vectores recombinantes y se seleccionaron aquellos parásitos que lo incorporaron. Se confirmó la disminución del mensajero mediante reacción en cadena de la polimerasa (PCR) en tiempo real, y se evaluaron el crecimiento y el enquistamiento en parásitos silvestres y transfectados. Resultados. Se observó una disminución de 40 y 70 % en el ARNm de SmB y SmD3, respectivamente. El crecimiento y el enquistamiento no se vieron afectados en estos parásitos. Conclusión. La disminución de SmB y SmD3 no afectó al parásito, lo que indica que el empalmosoma sigue siendo funcional, o que el empalme no es una función vital del parásito.


Introduction. Giardia intestinalis is an early divergent organism that was recently shown to have introns. The machinery responsible for the removal of introns in higher eukaryotes is the spliceosome, which consists of five ribonucleoproteins. Each of these ribonucleoproteins has a small nuclear RNA, a set of seven Sm proteins (B, D1, D2, D3, E, F and G) and several specific proteins. Some genes that encode spliceosome proteins have been bioinformatically identified in the parasite genome. Although it is assumed that the spliceosome is responsible for splicing in this parasite, biochemical characterization is lacking. Objective. To inhibit two G. intestinalis spliceosome protein genes in order to determine whether this inhibition affects parasite growth or encystation. Materials and methods. Antisense sequences of the genes encoding the spliceosomal parasite proteins SmB and SmD3 were cloned into a specific G. intestinalis vector. G. intestinalis individuals were subsequently transfected with the recombinant vectors and those parasites that incorporated the vector were selected. A decrease in mRNA levels by real-time PCR was confirmed and the growth and encystation in wild and transfected parasites was assessed. Results. A decrease of 40% and 70% of SmB and SmD3 mRNA levels, respectively, was observed. Growth and encystation in these parasites were not affected. Conclusion. Decrease of SmB and SmD3 mRNA levels does not affect the parasite, indicating that the spliceosome remains functional or that splicing is not essential for parasite viability.


Subject(s)
Giardia lamblia , Spliceosomes , Parasites , RNA Splicing , Transfection , Unicellular Eukaryotic Organisms
2.
Vet. Méx ; 43(1): 29-43, ene.-mar. 2012. ilus
Article in Spanish | LILACS-Express | LILACS | ID: lil-659609

ABSTRACT

LYT1 is a molecule with lytic activity under acidic conditions that, as genetically demonstrated, participates in the infection and stage transition of T. cruzi. The differing functions of this protein result from alternative trans-splicing, resulting in proteins that contain either a secretion and nuclear sequence (LYT1s) or the nuclear sequence alone (LYT1n). To determine the localization of different LYT1 products, transgenic parasites expressing LYT1s or LYT1n fused to the enhanced green fluorescence sequence were analyzed. LYT1s-EGFP localized to the flagellum, vacuoles, membrane and regions of the nucleus and kinetoplast; LYT1n-EGFP localized to the nucleus and kinetoplast, and occasionally in vacuoles. These results show that even though different LYT1 products localize to the same sites, they are also found in different intracellular organelles and microenvironments, which could influence their multifunctional behavior.


LYT1 es una molécula con actividad lítica en condiciones ácidas, que según se demostró genéticamente, participa en el proceso de infección y transición de estadio de T. cruzi. Su diferente funcionalidad es resultado de la producción de dos proteínas, obtenidas por trans-empalme alternativo, que contienen una secuencia de secreción y una nuclear (LYT1s) o únicamente la secuencia nuclear (LYT1n). Para evaluar la localización de los diferentes productos de LYT1, se analizaron parásitos transgénicos que expresan la secuencia de LYT1s o LYT1n fusionada con la secuencia de la verde fluorescente. LYT1s-EGFP se localiza en flagelo, vacuolas, membrana y región del núcleo y cinetoplasto; mientras que, LYT1n-EGFP se localiza en la región del núcleo y cinetoplasto, y ocasionalmente en vesículas. Estos resultados muestran que aún cuando los distintos productos de LYT1 comparten algunos sitios de localización, también se encuentran en distintos organelos y microambientes intracelulares que podrían influir en su comportamiento multifuncional.

3.
West Indian med. j ; 59(3): 300-305, June 2010. graf
Article in English | LILACS | ID: lil-672623

ABSTRACT

OBJECTIVE: To evaluate the feasibility of using magnetic nanoparticles (MNPs) as gene vector and the effect of magnetic field on efficiency of transfection. METHODS: Magnetic nanoparticles were prepared by controlling some chemical reaction parameters through a partially reduction precipitation method with ferric chloride aqueous solution as precursor material. The surface of particles was modified by polyethyleneimine (PEI) agents. The appearance, the size distribution, structure and phase constitute of MNPs were characterized by Transmission electron microscope (TEM), X-ray diffraction (XRD); the potential of absorbing DNA of MNPs was analysed by electrophoresis. Transfection was determined by delivering reporter gene, PGL2-control encoding luciferase, to different cell lines using MNPs-PLL as vector. The effect of magnetic field on the efficiency of transfection was determined using Nd-Fe-B permanent magnet. RESULTS: Foreign gene could be delivered to various cell lines by MNPs-PLL and expressed with high efficiency but the transfection efficiency and time course varied in the different cell lines studied. Magnetic field could enhance the efficiency of transfection by 5-10 fold. CONCLUSION: MNPs- PLL can be used as a novel non-viral gene vector in vitro, which offers a basis for gene delivery in vivo.


OBJETIVO: Evaluar la viabilidad del uso de nanopartículas magnéticas (MNPs) como vectores genéticos y el efecto de campo magnético en la eficiencia de la transfección. MÉTODOS: Se prepararon nanopartículas magnéticas mediante el control de algunos parámetros de la reacción química a través de un método de precipitación de reducción parcial con soluciones acuosas de cloruro férrico como el material precursor. La superficie de las partículas fue modificada mediante agentes de polietileneimina (PEI). La apariencia, el tamaño, distribución, estructura y constitución de fase de las MNPs, se caracterizaron mediante el microscopio electrónico de transmisión (MET), difracción de rayos X (DRX); el potencial de adsorber ADN de las MNPs se analizó mediante electroforesis; la transfección se determinó mediante el suministro del gene reportador de la luciferasa control PGL2, a diferentes líneas celulares usando MNPs - PLL como vectores. El efecto de campo magnético sobre la eficacia de la transfección se determinó usando el imán permanente NdFeB. RESULTADOS: El gene foráneo pudo suministrarse a varias líneas celulares mediante MNPs - PLL y expresarse con alta eficiencia pero la eficiencia de la transfección y el curso de tiempo variaron en las diferentes líneas celulares estudiadas. El campo magnético pudo mejorar la eficiencia de la transfección en 5-10 veces. CONCLUSION: Las MNPs - PLL pueden usarse como un nuevo vector genético no viral in vito, lo cual ofrece una base para el suministro del gene in vivo.


Subject(s)
Animals , Humans , Genetic Vectors , Magnetite Nanoparticles , Transfection/methods , Cell Line , Feasibility Studies , Genes, Reporter , Polyethyleneimine , Surface Properties
4.
Vet. Méx ; 40(1): 85-93, ene.-mar. 2009. ilus, tab
Article in Spanish | LILACS-Express | LILACS | ID: lil-632905

ABSTRACT

Electroporation has been the method of election for transfection of murine embryonic stem cells for over 15 years; however, it is a time consuming protocol because it requires large amounts of DNA and cells, as well as expensive and delicate equipment. Lipofection is a transfection method that requires lower amounts of cells and DNA than electroporation, and has proven to be efficient in a large number of cell lines. It has been shown that after lipofection, mouse embryonic stem cells remain pluripotent, capable of forming germ line chimeras and can be transfected with greater efficiency than with electroporation; however, gene targeting of mouse embryonic stem cells by lipofection has not been reported. The objective of this work was to find out if lipofection can be used as efficiently as electroporation for regular gene targeting protocols. This context compares gene targeting efficiency between these techniques in mouse embryonic stem cells E14TG2a, using a gene replacement type vector. No differences were found in gene targeting efficiency between groups; however, lipofection was three times more efficient than electroporation in transfection efficiency, which makes lipofection a less expensive alternative method to produce gene targeting in mouse embryonic stem cells.


Durante los últimos 15 años se ha demostrado que la electroporación representa el método ideal para la transfección de células troncoembrionarias de ratón; sin embargo, demanda grandes cantidades de ADN y células, así como equipo caro y delicado, ello hace que este proceso sea costoso y laborioso. La lipofección es un método de transfección que requiere menos de células y ADN que la electroporación; asimismo, ha probado ser eficiente en gran número de líneas celulares. Se ha demostrado que después de lipofectar células troncoembrionarias de ratón, éstas mantienen su pluripotencia y son capaces de formar quimeras de línea germinal y se transfectan con mayor eficiencia que con electroporación, pero no se ha notificado la mutagénesis dirigida mediante la lipofección de células troncoembrionarias de ratón. El objetivo del presente trabajo fue saber si la lipofección puede ser utilizada con la misma o mayor eficiencia que la electroporación para los protocolos regulares de mutagénesis dirigida; en este contexto, se compara la eficiencia en mutagénesis dirigida entre estas técnicas en células troncoembrionarias de ratón E14TG2a, utilizando un vector de reemplazo. Entre las células transfectadas no se hallan diferencias en la eficiencia en mutagénesis dirigida entre grupos; sin embargo, los resultados que aquí se ofrecen muestran que la lipofección es tres veces más eficiente en la transfección, lo cual indica que la lipofección es un método alternativo menos costoso para obtener mutagénesis dirigida en células troncoembrionarias de ratón.

5.
Int. j. morphol ; 23(3): 281-284, 2005. ilus
Article in English | LILACS | ID: lil-626795

ABSTRACT

The production of transgenic animals (TA) using transfected spermatozoa or eggs is commented. Different methods have been employed to introduce transgenes into the gametes of several vertebrates and invertebrates. Methods for the transfection of gametes have employed naked DNA, viral vectors, DNA/Liposome complexes, electroporation or high velocity microprojectiles. Spermatozoa and oocytes or eggs have showed a good transfection efficience (80% in some cases), and microscopical observations demonstrated that the transgenes appeared localized in the nucleus. Gametes have shown to be naturally protected against the entrance of foreign genes because some semino plasma or plasma membrane proteins block the entrance of foreign genes in spermatozoa. In the female this blockage is undertaken by the egg covers (the zona pellucida in mammals and the perivitelline coat in mollusks). In several cases the production of TA has been described after using the transfected gametes for in vitro fertilization or inseminations. Sometimes, larger percentages of TA were observed (85% in salmon). Nevertheless, these TA were mainly chimeric for the transgene and they were not capable to establish transgenic lines. It seems probable that TA produced by gamete transfections are different from those originated by the conventional microinjection procedures. Furthermore, gametes would develop some kind of mechanisms that modify the integration/expression of transgenes, or that block the integration of transgenes in the germinal line.


Se comentan algunos aspectos sobre la transfección de gametos y su empleo para la producción de animales transgénicos (AT). Para la transfección de gametos han sido empleados ADN desnudo, vectores virales, complejos ADN-Liposomas, electroporación, o microproyectiles de alta velocidad. En general, se han obtenido altos porcentajes de transfección (hasta del 80% en espermatozoides) y se ha observado que los transgenes se localizan en el interior del núcleo. Se ha constatado que los gametos están naturalmente protegidos frente a la entrada de genes extraños: en espermatozoides esta función la cumplen diversas proteínas presentes en los fluidos seminales o en su membrana plasmática; mientras que en los gametos femeninos son las envolturas del huevo (zona pelúcida en mamíferos o membrana perivitelina en moluscos) las que desarrollan esta labor. En muchos casos, los gametos transfectados se han utilizado en fecundaciones in vitro o en inseminaciones a fin de crear AT. En algunos casos, los porcentajes de estos AT han sido altos, como en el salmón (85%). Pero los AT, así creados, han sido en su mayoría quimeras y no han sido capaces de producir líneas transgénicas. Se sugiere que los AT producidos por gametos transfectados, son diferentes a los producidos por el método convencional de microinyección. Es probable que los gametos posean mecanismos, aún no descritos, capaces de modificar la integración/expresión de los transgenes, o que impedirían la integración de los transgenes en la línea germinal.

SELECTION OF CITATIONS
SEARCH DETAIL